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One-Dimensional Multi-Band Correlated Conductors and Anderson Impurity Physics
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A single Anderson impurity model recently predicted, through its unstable fixed point, the phase
diagram of a two band model correlated conductor, well confirmed by Dynamical Mean Field Theory
in infinite dimensions. We study here the one dimensional version of the same model and extract
its phase diagram in this opposite limit of reduced dimensionality. As expected for one dimension,
the Mott metal-insulator transition at half filling is replaced by a dimerized insulator-undimerized
Mott insulator transition, while away from half filling the strongly correlated superconductivity for
inverted Hund’s rule exchange in infinite dimensions is replaced by dominant pairing fluctuations.
Many other aspects of the one dimensional system, in particular the field theories and their sym-
metries are remarkably the same as those of the Anderson impurity, whose importance appears
enhanced.

PACS numbers: 71.30+h, 71.10.Pm, 71.10.Fd

Very substantial progress in our understanding of the
Mott metal-insulator transition (MIT) have been made
thanks to the so-called Dynamical Mean Field Theory
(DMFT)[1], a quantum analogue of the classical mean-
field theory which treats time correlations and is exact
in infinite dimensions (∞-D). In DMFT, the approach
to the MIT from the metal phase is accompanied by a
net separation of energy scales between well pre-formed
high energy Hubbard bands – images of the excitations in
the nearby Mott insulator – and the lingering low-energy
itinerant quasiparticles. This separation is in fact al-
ready contained in the isolated Anderson impurity model
(AIM), where most of the spectral weight is concentrated
in the high-energy sub-bands and only a small fraction
– describing quasiparticles promoted into the conduction
screening-bath – remains close to the chemical poten-
tial. This is of course unsurprising since in ∞-D DMFT
maps the lattice model of interacting electrons onto an
AIM supplemented by a self-consistency condition[1]. Ir-
respective of whether this mapping is merely a trick to
solve the lattice model in ∞-D or whether it hides per-
haps a more fundamental aspect of the physics close to a
MIT, this does suggest that some of the strongly corre-
lated lattice properties could be directly inferred by the
AIM itself, even without self-consistency. This route was
recently explored to anticipate the anomalous properties
near the MIT of a two-band Hubbard conductor on the
basis of the phase diagram and in particular of the unsta-
ble fixed point of a two-orbital AIM[2]. All the predicted
properties, including strongly correlated superconductiv-
ity near the Mott transition[3] were later confirmed by
full DMFT[4]. Despite that success, it would still seem
hazardous to suggest that the properties of a single AIM
have generally anything to do with the actual behavior of
the model lattice conductor away from ∞-D, least of all
in the opposite extreme of one dimension (1D). We show
in this Letter that, apart from some obvious differences
related to dimensionality, the phase diagram of the model
does not change significantly in 1D, where therefore the

AIM physics appears to remain significant.
We consider the two-band Hamiltonian near half-filling

and in 1D

Ĥ = −t
2

∑

a=1

∑

i σ

(

c†i,aσci+1,aσ +H.c.
)

+
U

2

∑

i

(n̂i − 2)
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−J
4

∑

a6=b

∑

i σ σ′

c†i,aσc
†
i,bσ′ci,aσ′ci,bσ, (1)

where c†i,aσ(ci,aσ) creates(annihilates) an electron at site
i, in orbital a = 1, 2 with spin σ =↑, ↓, and n̂i =
∑

aσ c
†
i,aσci,aσ is the electron density at site i, and U ≫

|J | is an on-site Coulomb repulsion. This Hamiltonian
has recently been discussed as relevant to the novel doped
metal-phthalocyanine conductors.[5] For J = 0 Eq. (1)
describes an SU(4) Hubbard model, analysed e.g. in
Ref. [6]. A finite value of J lowers the symmetry down to
U(1)×SU(2)× (U(1) × Z2), where U(1) refers to charge,
SU(2) to spin and (U(1) × Z2) to the flavour (orbital)
sector. We stress here that the single AIM shares identi-
cally this same symmetry, a point which we will return to
further down. Two electrons on the same site can form
either a spin triplet, with energy J/4, an inter-orbital
singlet, with energy −3J/4, or two intra-orbital singlets
with energy −J/4. Therefore J < 0 favors the spin triplet
while J > 0 the inter-orbital singlet. Actually J > 0,
(“inverted Hund’s rule exchange”), provides a pairing

mechanism in the Cooper channel c†i,1↑c
†
i,2↓ + c†i,2↑c

†
i,1↓.

Pairing is impeded by the repulsion U , so that the bare

scattering amplitude in the inter-chain singlet channel,
A = U − J/2, is attractive only in the unrealistic case
of J > 2U > 0, apparently excluding superconductiv-
ity despite the pairing mechanism provided by J > 0.
As shown in DMFT [4], this näive expection is actually
wrong, at least in ∞-D. A superconducting pocket ap-
pears near the half-filled Mott insulator, U ∼ t ≫ J ,
moreover with a hugely enhanced superconducting gap
with respect to the U = 0 BCS gap value. This surpris-
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ing result had in fact been foreshadowed by the single
AIM study[2] whose phase diagram displays an unstable
fixed point at 0 < J∗ ≃ TK , where TK is the Kondo tem-
perature, which separates a Kondo screened phase for
J < J∗ from an unscreened phase for J > J∗. Translated
into DMFT, the AIM Kondo temperature becomes the
quasiparticle coherent bandwidth, vanishing at the MIT.
This implies that the AIM onto which the metallic lattice
model maps in ∞-D must necessarily cross the unstable
fixed point J ∼ TK before the MIT. The speculation[2]
that the lattice model would respond to the local insta-
bility by spontaneously developing a bulk order parame-
ter in the inter-orbital singlet Cooper channel was fully
confirmed by DMFT[4].

We turn now to study the same model in 1D. As
usual it is convenient here to represent (1) within
bosonization.[7] The Fermi fields around the right (R),
+kF , and left (L), −kF , Fermi points are expressed as
ψR(L),aσ(x) ∼ exp [±ikF x− i

√
π (Θaσ(x) ∓ Φaσ(x))],

where Φaσ(x) and ∂xΘaσ(x) are conjugate
Bose fields. We introduce the linear com-
binations Φc = (Φ1↑ + Φ1↓ + Φ2↑ + Φ2↓) /2,
Φs = (Φ1↑ − Φ1↓ + Φ2↑ − Φ2↓) /2, Φf =
(Φ1↑ + Φ1↓ − Φ2↑ − Φ2↓) /2, and Φsf =
(Φ1↑ − Φ1↓ − Φ2↑ + Φ2↓) /2, which describe respec-
tively the total charge, the total spin, the relative
charge and the relative spin density fluctuations. In this
representation the interaction involves only bilinears of
cos

√
4πΦn and cos

√
4πΘn, n = c, s, f, sf , which in turn

can be expressed as

cos
√

4πΦn = −iπα
2

(ξR,nξL,n + ζR,nζL,n) , (2)

cos
√

4πΘn = i
πα

2
(ξR,nξL,n − ζR,nζL,n) , (3)

where ξR(L),n and ζR(L),n are Majorana fermions and α
is a cutoff distance. These fermions can be used to intro-
duce eight two-dimensional classical Ising models, each
one in principle characterized by a mass m ∼ (T − Tc),
m < 0 and m > 0 meaning ordered and disordered
phases, andm = 0 the critical point. In this way the U(1)
charge sector is represented by two identical Ising models
with massmc, the doublet (ξR,c, ξL,c) and (ζR,c, ζL,c); the
SU(2) spin sector by three identical Ising models (mass
ms), the triplet (ξR,s, ξL,s), (ζR,s, ζL,s) and (ξR,sf , ξL,sf );
the U(1) flavour sector by two identical Ising copies (mass
mf ), the doublet (ξR,f , ξL,f) and (ζR,f , ζL,f ); and fi-
nally the remaining flavour Z2 by a single Ising model
(mass m0), the singlet (ζR,sf , ζL,sf ).[8] Without inter-
action all Ising models are critical. The interaction in-
duces marginally relevant couplings between them which
might spontaneously generate finite masses. Indeed, by
a fermion two-loop renormalization group (RG) analysis,
we find that the Hamiltonian generally flows to strong
coupling fixed points which allow a simple mean-field de-
scription in terms of finite average values of 〈ξR,nξL,n〉
and 〈ζR,nζL,n〉, n = c, s, f, sf , which preserve all con-
tinuous symmetries. Within this same description the

phase diagram of (1) turns out to be characterized by
simply identifying the relative signs of the masses mi,
i = c, s, f, 0, while the overall sign has a physical meaning
only in the spontaneoulsy dimerized phase, see below.[9]

We start from half filling, 〈n̂i〉 = 2, and analyse the
phase diagram for increasing U/t keeping for simplicity
a fixed ratio U/|J | ≫ 1. At weak coupling, U/t≪ 1, the
Hamiltonian flows under RG to an SO(8) Gross-Neveu
model, which describes a spontaneously dimerized in-
sulator with gaps in the whole excitation spectrum. It
is known that the SU(4) Hubbard model, i.e. (1) with
J = 0, dimerizes at half-filling[6, 10], and that a small
|J | ≪ U cannot destabilize this gapped phase.[11] This
phase is characterized by all masses having the same sign,
with the overall sign reflecting the broken translational
symmetry. Eventually, though, this dimerized phase can-
not survive indefinitely for large U/t. When U ≫ t, two
electrons localize at each site in a configuration optimiz-
ing the on-site exchange J . In particular for J < 0, con-
ventional Hund’s rules, the model effectively reduces to
a spin S=1 Heisenberg chain, still gapped everywhere in
the spectrum but not dimerized[12]. For inverted Hund’s
rules, J > 0 , the singlet configuration

√

1

2

[

c†i,1↑c
†
i,2↓ + c†i,2↑c

†
i,1↓

]

|0〉, (4)

is favored and the ground state is akin to a collection of
local singlets, a kind of local valence-bond Mott insula-
tor, still gapped but not dimerized. We conclude that
upon increasing U/t the dimerization must disappear for
either sign of J . In fact, whereas at weak coupling at
for J = 0 the dimerization-induced gaps in the spin and
flavour sectors follow the BCS-like behavior of the charge
gap, the latter continues to increase monotonically as U
increases while the former gaps reach a maximum, ap-
proximately when U ∼ 5t, and then start dropping as
t2/U for U ≫ t[6, 10]. This decoupling of charge from
spin and orbital modes is a 1D remnant of the MIT and
seems quite sharp[6]. The weak exchange |J |/U ≪ 1 ,
irrelevant in the weak coupling dimerized phase, eventu-
ally turns in strong coupling to a relevant perturbation
able to suppress dimerization. Thus one might expect
that this could occur only for very large U , when the
spin gap induced by dimerization becomes small of order
|J |. However it cannot be excluded that the demise of
dimerization could even take place for smaller U , say for
U < 5t. The two-loop RG equations moreover suggest
for J < 0 a c = 3/2 spin-SU(2)2 critical point where
the triplet mass ms changes sign[13], signaling a transi-
tion from the dimerized insulator to the Haldane spin-1
chain Mott insulator. For J > 0 the transition is in-
stead predicted to occur through a c = 1/2 Ising critical
point where the singlet mass m0 crosses zero, signaling
the transition from a dimerized to the valence-bond Mott
insulator, see Fig. 1.

Let us introduce doping, moving away from half filling.
Dropping the Umklapp terms from the weak coupling
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FIG. 1: Phase diagram of model (1) near half-filling as a func-
tion of doping |n−2| and of U/t at fixed |J |/U ≪ 1 for J < 0
(right panel) and J > 0 (left panel). At half-filling the system
is always insulating and displays by increasing U/t an Ising
transition (c = 1/2 flavour) from a Dimerized Mott insula-
tor (MI) to a Valence-bond MI for J > 0; and a c = 3/2
transition to a S=1 Haldane MI for J < 0 where the spin is
gapless (c = 3/2 spin). All the insulating phases evolve upon
doping into metal with gaps in all noncharge sectors. For the
doped Haldane MI the additional label (flavour) or (spin) in-
dicates that the phase can be viewed as the natural evolution
away from half-filling of a Haldane chain built of either spin
or flavour triplets. The transition lines bewteen each different
metallic phase are identified by the central charge c and by
the sector involved, spin or flavour.

RG equations, the interaction flows, for either sign of J ,
towards a fixed point

Ĥint → −g∗
∫

dx∆†(x)∆(x), (5)

where

∆† = ψ†
R,1↑ψ

†
L,2↓ +ψ†

L,2↑ψ
†
R,1↓ −ψ†

L,1↑ψ
†
R,2↓ −ψ†

R,2↑ψ
†
L,1↓

(6)
which is a spin-singlet, flavour-singlet but space-odd pair-
ing operator[11, 14]. This fixed point interaction has a
dynamically enlarged SU(4) symmetry[9, 11], unlike the
original model (1), and realizes a doped Haldane chain,
the two 1/2-spin constituents forming singlet bonds, one
to its right and the other to its left.[15] Moving from
J < 0 to J > 0 interchanges the spin sector and the
flavour sector, which includes the doublet and the sin-
glet forming a degenerate triplet, again a dynamically en-
larged SU(2)2 flavour symmetry. The Ising masses satisfy
mc = 0, mf m0 > 0 but msmf < 0. The pairing correla-

tion function 〈∆(x)∆†(0)〉 ∼ (1/x)1/2Kc where Kc is the
Luttinger liquid exponent of the gapless U(1) charge sec-
tor. There are also power-law decaying 4kF correlation
functions with exponent 2Kc which involve the density-
wave operators exp

(

±i4 kF x± i
√

4πΦc

)

cos
√

4πΦs(f)

and exp
(

±i4 kF x± i
√

4πΦc

)

cos
√

4πΘsf . If Kc > 1/2
the superconducting fluctuations dominate over the 4kF

density-wave ones, and the opposite for Kc < 1/2. Since
the model has an insulating phase at quarter filling[16],
by standard arguments[17] we expect Kc ≥ 1/4. Hence

the pairing susceptibility in channel (6) always diverges
faster than for free fermions.

Revealing as it is, this weak coupling analysis is not
fully satisfying as it implies an unphysically abrupt
change of sign of ms at the slightest density deviation
from half-filling. A better approach near half filling may
be a two-cutoff RG scheme, namely running at first the
RG as if for half filling until reaching an energy scale of
the order of the chemical potential shift, and only at this
point dropping the Umklapp terms. Doing this we find
that the doped dimerized Mott insulator turns to a metal-
lic phase, mc = 0, all other masses retaining their sign.
Here the dimer order parameter is zero but its correlation
function decays slowly with a power-law exponent Kc/2.
This agrees with a similar analysis by Boulat[10] and
leads us to propose the phase diagram of Fig. 1 where the
doped dimerized insulator transform into the doped Hal-
dane phase by a c = 3/2 critical line[13] which involves
the spin or the flavour sector for J < 0 and J > 0, respec-
tively. In addition we expect, by similar arguments, that
the valence bond Mott insulator at large U/t with J > 0
transforms upon doping to a metal phase, with mc = 0,
msmf > 0 but m0mf < 0. This phase is identified by
a fixed point interaction of exactly the same form as (5)
with the pairing operator corresponding to the singlet
configuration (4), namely

∆† = ψ†
R,1↑ψ

†
L,2↓+ψ†

L,2↑ψ
†
R,1↓+ψ†

L,1↑ψ
†
R,2↓+ψ†

R,2↑ψ
†
L,1↓,

(7)
which is still a spin-singlet but it is now no longer in-
variant under the flavour SU(2). The pairing correlation
function in this channel still decays with exponent 1/2Kc,
and again there are competing 4kF density wave fluctu-
ations with exponent 2Kc. Therefore we argue that the
Ising critical point at half-filling for J > 0 and large U/t
extends to a critical c = 1/2 line away from half-filling,
as in Fig. 1. This line should merge into the c = 3/2
flavor SU(2)2 critical line, out of which a c = 1 U(1) crit-
ical line must emerge. Along this line the flavor doublet
mass, mf , changes sign. This scenario is compatible with
our expectation far away from half-filling. Indeed, if we
keep the ratio J/U > 0 fixed and increase U/t we arrive
at a situation where J ≫ t. Here, whenever two electrons
occupy the same site, they are forced into the singlet con-
figuration (4). This constraint can be implemented by a
projector leading to a model which was numerically anal-
ysed in Ref. [18] close to quarter filling. The numerical
results are compatible with the existence of the doped
valence-bond phase. Since the weak coupling phase is in-
stead the doped Haldane chain, we conclude that there
is a transition by increasing U/t at fixed J/U > 0 whose
criticality belongs to the U(1) universality class. Out
of all these arguments we finally draw the qualititative
phase diagram of Fig. 1.

We note the presence throughout the phase diagram
(except of course at half filling) of a singular spin-singlet
Cooper pairing susceptibility either in channel (6), within
the doped Haldane insulator, or in channel (7), within the
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doped valence-bond insulator. The latter, as discussed at
the beginning, is most unexpected, emerging only for suf-
ficiently strong repulsion U . We note that, if 0 < J ≪ t
were fixed, we still would expect at U = 0 singular pairing
susceptibilities below an exponentially small energy scale
of the order of the spin and flavour gaps. Remarkably, we
find that the role of a large U is to raise this energy scale
by increasing the magnitude of the gaps, which in turns
implies that U effectively enhances pairing fluctuations.

Finally we consider the competition between Cooper
pairing and 4kF density-wave fluctuations in the doped
valence bond and in the Haldane phases as we approach
the Mott insulator at half filling. The insulating behavior
is driven at weak coupling by 4kF -Umklapp terms of the
form cos

√
4πΦc cos

√
4πΦs

(

cos
√

4πΦf

) (

cos
√

4πΘsf

)

.
Since the spin and flavour sectors remain gapped away
from half filling, one is tempted to conclude that Kc → 1
on approaching half filling[17]. However, both Haldane
and valence bond Mott insulators require a large U/t, and
the above weak-coupling argument might not be correct.
One may argue that the decoupling of charge from the
other sectors as U/t increases may be modelled by adding

an 8kF -Umklapp cos
√

16πΦc[6]. If alone this term would
rather suggest a MIT at half filling with Kc → 1/4. How-
ever it was found numerically that in the half-filled SU(4)
Hubbard model the charge-2 Majorana fermions, ξR(L),c

and ζR(L),c, remain coherent excitations even at large
U , even though their energy is only slightly below the
two-particle continuum, merging into the latter only for
U/t → ∞. This suggests that Kc tends always to 1 as
the density approaches half filling, even though a larger
U implies a sharper crossover from Kc ≃ 1/4 to Kc = 1.
Hence we conclude that sufficiently close to the MIT the
Cooper channel pairing dominates over 4kF fluctuations.

We can finally return to our original motivation and
discuss differences/analogies with the phase diagram of
the same model suggested by the AIM and verified by
DMFT in infinite dimensions for J > 0. At half fill-

ing we always find in 1D an insulator because of perfect
nesting, generally absent in higher dimensions. Hence
the MIT of ∞-D is replaced in 1D by an Ising transition
between two insulators, the band-like dimerized insulator
(driven by nesting) and the strong-coupling undimerized
valence-bond Mott insulator. Upon doping, we still ex-
pect by increasing U/t an Ising transition from a doped
dimerized insulator into a doped valence-bond insulator,
the latter characterized by a singular pairing susceptibil-
ity. This is the exact analog of what was found in infinite
dimensions. Even more surprising is the role of the sin-
glet Ising sector (ζR,sf , ζL,sf ) which becomes critical at
the transition. As previously mentioned, the behavior of
the lattice model in ∞-D is controlled near the MIT by
the unstable fixed point of the AIM onto which the lat-
tice model maps. In turn this unstable fixed point can
be interpreted as the free boundary condition fixed point
separating the two fixed boundary conditions just in the
same Ising sector, and that is the natural generalization
to a boundary problem of the Ising critical point which
we uncovered in 1D. It is now clear that both the 1D and
the single impurity analysis make use of the same field
theoretical scheme, the non-abelian bosonization, where
the Ising sector emerges naturally from embedding the
flavour SU(2)2 into U(1). Suggestively, this appears to
be the reason why the behavior in one dimension and in
infinite dimensions are so similar. At this stage we cannot
say whether this similarity is a mere accident or not. It
certainly does encourage the speculation that the physics
of a single AIM may play a more fundamental role in the
description of strongly correlated metals in any dimen-
sions, at least at intermediate energy/temperature scales
before full bulk coherence settles in.
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